Konstantin Makarychev joins Northwestern CS Theory Group!

makarychev-konstantinThe Computer Science Division at Northwestern University welcomes new faculty member Dr. Konstantin (Kostya) Makarychev as an Associate Professor, beginning immediately. Dr. Makarychev’s position is one of the ten new faculty lines in CS which were announced in June 2016.

Dr. Makarychev is a theoretical computer scientist working on approximation algorithms, beyond worst-case analysis, applications of high-dimension geometry to computer science, and combinatorial optimization for designing efficient algorithms for computationally hard problems.

Dr. Makarychev joins Northwestern from Microsoft Research in Redmond, WA (2012-2016) and IBM Research Labs in Yorktown Heights, NY (2007-2012). Further details of his background can be found on his personal webpage.

Please click here for details, and the announcement on Northwestern homepage.

Advertisements

Postdoc Openings

The Northwestern Theory group seeks applications for 1-2 postdoctoral positions starting in September 2017. Applicants should be recent Ph.D.’s with interest in theoretical computer science. Research areas include but are not limited to algorithms, computational complexity, theoretical machine learning and optimization.  The postdoc will also be able to take advantage of the strong theory presence in the Chicago area overall. 
Applications will be accepted until the position is filled. However, applications need to be submitted by Jan 1st, 2017 to receive full consideration. Please see  https://theory.eecs.northwestern.edu/prospective-postdocs/ for details.

Prof. De’s research at FOCS 2016

TCS Prof. Anindya De had a joint paper with Michael Saks (Rutgers) and Sijian Tang (Rutgers) in 57th Annual IEEE Symposium on Foundations of Computer Science (FOCS 16). The paper “Noisy population recovery in polynomial time” addresses the problem of recovering an unknown distribution on binary strings under noise. This problem is related to well-studied problems in learning such as learning mixtures of spherical Gaussians and product distributions. A manuscript of the paper can be found here.

 

 

 

Abhratanu Dutta and Yiding Feng finish 1st in ACM-ICPC Midcentral Regional

Theory PhD students Abhratanu Dutta and Yiding Feng along with their teammate Ruohong Zhang finished first at the ACM-ICPC Midcentral Regional Programming Contest this year. They finished in 1st place out of 156 teams representing 56 different schools in total and have advanced to the ACM-ICPC World Finals in Rapid City, South Dakota from May 20-25, 2017.

The ACM-ICPC (Association for Computing Machinery – International Collegiate Programming Contest) is a multi-tier, team-based, programming competition. Headquartered at Baylor University, Texas, it operates according to the rules and regulations formulated by the ACM. The contest participants come from over 2,000 universities that are spread across 80 countries and six continents.

Details can be found here.